DICHTUNGSDATENBLATT für Dichtungsplatten und Dichtungen im Krafthauptschluss

Datenblatt-Nummer.

		Hersteller.	SGL	TECHNOLOGIES	5 Gm5H			
	Hersteller-Kennze	Hersteller-Type: eichnungs-Code: -Nr. / Artikel-Nr.:	V	RAFLEX HOCHDR 1173I				
Werkstoff-Kurzzeichen/Bezugsnorm:			DIN 28091-4: GRI-3-Cr Eddstahlverstarkung aus 1.4401					
(Dichtung/Dichtungsplatte) Werkstoff-Kurzzeichen/Bezugsnorm: (Einlagewerkstoff)								
	Abmessung	gen Dicke (mm):		1,0 Sis 4,0				
	Abmessunger	n sonstige (mm):	1000	x 1000 mm odes	1500 x 1500 mm			
	Merkmal		Einheit	Bestimmungsmethode/ Prūfnorm	Gewährleisteter Mindestwert des Produkts			
Dichte			g/cm ³	DIN 28090-2	v 1,1			
Dichte de	es Graphits vendung von Graphi	it)	g/cm ³	DIN 28090-2	1,1			
	e Lagerungszeit		(in Jahren)	DIN 7716	Atterungs Sestandig			
(bei Verv	vendung von Elastor	meren)			9			
ANGABE	EN ZUR BESTĀNDI	IGKEIT						
	e Betriebstemperatu ampf/Wasser	r (°C) für	-	-	2400 C-Rucksprachen			
Medienb	eständigkeit		-	DIN 28090-3	siche Beständickeitslist			
Abdicht- und ggf. (Medium,	verhalten rte bezüglich der Än und Verformungseig auch Dichtungsabm , Druck, Temperatur sflächenpressung us	genschaften essungen ,	-	1				
	AN VERUNREINIG			Anforderungen siehe	KS D 2021/50 Anhang D			
Wasserlösliches Chlorid			mg/kg	651803	< 5 ppm			
Gesamtmenge Chlor			makg	И	1 6 10 ppm			
Gesamtmenge [Chlor + Fluor]			mgAg	И	< 20 ppm			
Gesamtr	Gesamtmenge Fluor			n (SEL-Prifromm) < 10 ppm				
Derr	Datum	Erstellt		Bestätigung Hersteller				
Rev.	Datum	2.0.0						
01					487			
02								

DichtungsDatenbl. Hauptschluss.doc

Seite 1 von 2

DICHTUNGSDATENBLATT für Dichtungsplatten und Dichtungen im Krafthauptschluss

	Dichtung	skennwe	rte fur Dic	ntungen	mi Klaitii	auptschlu	././ 1.		
I. Abdichteigen				® _	SIGRAF	ZEX HOO	chelvuck		
r. Apdicincigo	1	/L 80			lv takai	widenmer	Dichtungsh	reite ha 71	
Abmessung der l	Prüflinge:	× 50 ×	x 50 x 30 mm			Verhältnis wirksamer Dichtungsbreite b _D zu Dichtungsdicke h _D			
Prūfmedium ¹⁾	N2		N ₂		N ₂		N2		
Dichtheitklasse			60,1		60,01		L0,001		
Innendruck (bar)	40		40		40		40		
Illinonary ()	OVUL.	σ _{BU/L}	σνυλ.	O _{BU/L}	σνυλ h πν. σ.	σ _{BU/L}	ovur bzw. ov	σ _{BU/L}	
	bzw. ov		bzw. ov	>25	38	>70	~ 100	>150	
	5	> 7	13	120	00				
Kennwerte ²⁾									
2									
(N/mm²) 2. Verformungs	n en en le comme de la comme				ED				
`	n en en le comme de la comme	2 × 50	σ_{BO} , E_{D} , σ_{BO} , σ_{BO		Ep 600/	670 200 °C		300°C	
2. Verformungs Abmessung der (mm):	Prüflinge	2 × 50 2 × 50 Raumte	5 x 75 m		C 6vo/	300	,	60	
2. Verformungs Abmessung der (mm):	Prūflinge	2 x 50 2 x 50 Raumte	5 x 75 m 0 x 30 m emperatur	nm für 100°	6vo/		ž Ž	89 89	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{BO} E_D N/mm ² (σ_{V} =	Prūflinge (N/mm²) N/mm²	2 x 50 2 x 50 Raumte 30	5 x 75 m 0 x 30 m emperatur	100°	6vo/	300	2 6	89 85	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{BO} E_D N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} =	Prūflinge (N/mm²) (N/mm² N/mm²	2 x 50 2 x 50 Raumte 30 30 7	5 x 75 m 0 x 30 m emperatur 40 02	100° 320 238	C 6vo/	<i>300 233</i>	6	860 83 85	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{BO} E_D N/mm² (σ_{V} = E_D N/mm² (σ_{V} = σ_{D} N/mm² (σ_{V} =	Prūflinge (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)	2 x 50 2 x 50 Raumte 30 30 7.	5 x 75 m 0 x 30 m emperatur 40 02 27	100° 320 238 715	5 6vo	300 233 700	6	89 85	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{BO} E_D N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} =	Prūflinge (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)	2 x 50 2 x 50 Raumte 30 30 7.	5 x 75 m 0 x 30 m emperatur 40 02 27	100° 320 238 715	5 6vo	300 233 700 1753	6 17	860 883 85 834 840	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{BC} E_D N/mm² (σ_{V} = E_D N/mm² (σ_{V} = σ_{D} N/mm² (σ_{V} =	Prūflinge (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)	2 x 50 2 x 50 Raumte 30 30 7, 1 180	5 x 75 m 0 x 30 m emperatur 40 02 27	100° 320 238 715	5 1	300 233 700 1753 4455	6 17	860 85 85 34 340	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{SO} E_D N/mm² (σ_{V} = E_D N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = Abmessung der	Prūflinge 3) (N/mm²) 10 N/mm² 20 N/mm² 40 N/mm² 80 N/mm² Prūflinge	2 x 50 2 x 50 Raumte 30 30 7 1 180 1 460	5 x 75 m 0 x 30 v emperatur 40 02 27 06	100° 320 238 715 178 457.	5 5 1	300 233 700 1753 4455	6 17 40 02 C1	860 85 85 34 340	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{SO} E_D N/mm² (σ_{V} = E_D N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = Abmessung der	Prūflinge (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)	2 x 50 2 x 50 Raumte 30 30 7 1 180 1 460	5 x 75 m 0 x 30 p emperatur 40 02 27 06 64 emperatur	100° 320 298 715 178	5 1	300 233 700 1753 4455	6 17	860 85 85 34 340	
2. Verformungs Abmessung der (mm): σ_{VO} bzw. σ_{SO} E_D N/mm² (σ_{V} = E_D N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = σ_{VO} N/mm² (σ_{V} = Abmessung der	Prūflinge 3) (N/mm²) 10 N/mm² 20 N/mm² 40 N/mm² Prūflinge	2 x 50 2 x 50 Raumte 30 30 7 1 180 1 460	5 x 75 m 0 x 30 p emperatur 40 02 27 06 64 emperatur	100° 320 298 715 178	5 1	300 233 700 1753 4455	6 17 40 02 C1	860 85 85 34 340	

1) Als Prüfmedium ist Stickstoff oder Helium zu wählen. Die Dichtheitsklasse und die Innendruckstufe ist nach Anforderung des

σ_{BU/L} ist Abhängigkeit von σ_V ≥ σ_{VU/L} anzugeben. Alternativ d

ürfen auch grafische Darstellungen angegeben werden.

3) Bei Dichtungen, bei denen das Kriechrelaxationsverhalten einen wesentlichen Einfluss hat, können diese Kennwerte nur in SGL ECHNOLOGIES GMBH Zusammenhang mit AhD betrachtet werden. Expanded Graphite

Ausgangsflächenpressung.

* Keine veiteren Meßwerte vorhanden da Graphit Kaum

* keine veiteren Meßwerte vorhanden da Graphit Kaum

sum Kricken neigt. Verendlich ausrage braftiger sind;

Eksu = 30-40% und Ewsu < 4% nach DIN 28030